Some of the electron density may have been transferred to the $\mathrm{Na}{ }^{+}$cation.

Concluding remarks

The influence of sodium cations on coordinated lonepair deformation densities is too strong to be neglected. In the case of UH-AF 50 NA the sodium cation seems to weaken the densities of most of the lone pairs. The influence of hydrogen bonds may be much lower. Therefore it would be interesting to measure the deformation density of the ammonium or amine salts of the title compound.

This work has been funded by the German Federal Minister for Research and Technology (BMFT) under contract No. 03-LUl FUB-0-Fl-55 and by the Fonds der Chemischen Industrie. We thank Dr Hans-Ullrich Wagner, Institute of Organic Chemistry, University of Munich, for helpful advice.

References

Frisch, M. J., Binkley, J. S., Schlegei., H. B., Ragilavachari, K., Melius, C. F., Martin, R. L., Stewart, J. J.. Bobrowicz, F. W., Rohlfing, C. M., Kafin, L. R., Dhirees, D. J., Seeger, R., Whiteside, R. A., Fox, D. J., Fluder, E. M. \& Pople, J. A. (1984). GAUSSIAN86. Carnegie- Mellon Quantum Chemistry Publishing Unit, Pittsburgh, PA, USA.
Kfller, E. (1988). SCHAKAL88. A FORTRAN Program for the Graphic Representation of Molecular and Crystallographic Models. Univ. of Freiburg, Germany.
Olovsson, I. (1982). Croat. Chem. Acta, 55, 171-190.
Rlidert, R., Buschmann, J., Luger, P., Gregson; D. \& TrummLITZ., G. (1988). Acta Cr!st. C44, 10831086.
Rudert, R., Buschmann, J., Luger. P., Gregson, D. \& Trummlitz, G. (1989). Acta Cryst. C45. 1013-1015.
Schomakir, V. \& Trueblood, K. N. (1968). Acta Crist. B24, 63-76.
Stewart, J. M. \& Hall, S. R. (1986). Editors. The XTAL Sistem of C'ristallographic Programs. Tech. Rep. TR-1364.2. Computer Science Center, Univ. of Maryland. College Park, Maryland, USA.
Stewart, R. F.. Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Wang, Y. \& Liao, J. H. (1988). Acta Crist. B45, 65-69.
Zachariasen, W. H. (1967). Acta Crist. 23, 558-564.

Electron-Density Distribution in lel $_{3}$ - and $\boldsymbol{o b}_{3}$-Tris(trans-1,2-diaminocyclohexane)cobalt(III) Nitrate Trihydrate at 120 K

By Mitsuo Morooka, Shigeru Ohba* and Yoshihiko Saito
Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223, Japan
and Hiroshi Miyamae
Department of Chemistry, Faculty of Science, Josai University, Keyakidai 1-1, Sakado-shi, Saitama 350-02, Japan

(Received 19 February 1991; accepted 11 June 1991)

Abstract

The electron-density distribution in two optically active $\mathrm{Co}^{\text {III }}$ complexes with trans-1,2-diaminocyclohexane (chxn) as a bidentate ligand have been investigated by the multipole-expansion method based on X-ray intensities collected at 120 K with Mo $K \alpha$ radiation ($\lambda=0.71073 \AA$). Crystals of the lel $_{3}$ - and ob_{3}-conformers are isotypic and hexagonal $P 6_{3}, Z=2, R=0.038$ and 0.033 for 3916 and 1831 reflections, respectively. $\left[\mathrm{Co}(R, R \text {-chxn })_{3}\right]\left(\mathrm{NO}_{3}\right)_{3}$.$3 \mathrm{H}_{2} \mathrm{O}, \quad M_{r}=641 \cdot 6, \quad F(000)=684 . \quad(\mathrm{I}): \quad \Delta(\lambda \lambda \lambda)-$ complex (lel ${ }_{3}$-isomer), $a=12.998$ (3), $c=9.973$ (3) \AA, $V=1459.2(8) \AA^{3}, \quad D_{x}=1.46 \mathrm{Mg} \mathrm{m}^{-3}, \quad \mu=$ $0.653 \mathrm{~mm}^{\text {I }}$. (II): $\Lambda(\lambda \lambda \lambda)$-complex ($o b_{3}$-isomer), $a=$

^[* To whom correspondence should be addressed]

0108-7681/91/060910-08\$03.00
$13 \cdot 192(1), c=9.787(2) \AA, \quad V=1475 \cdot 0(5) \AA^{3}, D_{x}=$ $1.44 \mathrm{Mg} \mathrm{m}^{-3}, \mu=0.646 \mathrm{~mm}{ }^{1}$. The aspherical $3 d-$ electron distribution around the Co atom is essentially the same as that of the octahedral complex for both isomers and significant chirality was not observed. The necessity of phase improvement for the deformation density around the Co atom in the non-centrosymmetric structures depends on the symmetry of the multipole densities. The features of the multipole density, hexadecapole v_{40}, are not smeared by the use of the independent atom model (IAM) phase because the phase of the y_{40} contribution to the structure factor coincides with that of the cobalt monopole. On the other hand, the features of y_{43} are much affected by the phase error. Incompleteness of the Fourier series within the $(\sin \theta / \lambda)_{\max }$ in the

[^1]calculation of the deformation density produces an artificial imbalance of the peak heights of the aspherical d-electron distribution.

Introduction

As an extension of our systematic studies on the aspherical d-electron distribution in transition-metal complexes (Takazawa, Ohba \& Saito, 1988; and references therein), we have investigated trisbidentate $\mathrm{Co}^{\text {III }}$ complexes. The title crystals are suitable for this purpose because the metal complexes have crystallographic threefold symmetry and the puckering motion of the chelate rings is prevented by the rigid chair form of the cyclohexane moiety in the ligand. Racemic crystals could not be obtained because of spontaneous resolution. Since the crystal structure is non-centrosymmetric, phase improvement was achieved by the multipole-expansion method (Hansen \& Coppens, 1978).

A preliminary study on the crystal structure and the electron-density distribution of $\left[\mathrm{Co}(\mathrm{ch} x \mathrm{n})_{3}\right]^{3+}$ (Miyamae, 1977) and $\left[R h(c h x n)_{3}\right]^{3+}$ complexes (Miyamae, Sato \& Saito, 1977) was carried out at room temperature. In the present study, crystals of the $\mathrm{Co}^{\text {III }}$ complexes were cooled to 120 K in order to reduce the thermal smearing.

Experimental

Data collection

Crystals of $\Delta(\lambda \lambda \lambda)$ - and $\Lambda(\lambda \lambda \lambda)-[\operatorname{Co}(R, R-$ chxn $\left.)_{3}\right]\left(\mathrm{NO}_{3}\right)_{3} .3 \mathrm{H}_{2} \mathrm{O}$ were kindly supplied by Dr F . Galsbøl of H. C. Ørsted Institute, University of Copenhagen. They are orange-red hexagonal prisms.
(I): A crystal shaped into a sphere of 0.62 mm in diameter was kept at 120 K with cold nitrogen gas. X-ray intensities were measured on a Rigaku AFC-5 four-circle diffractometer with graphite-monochromatized Mo $K \alpha$ radiation, $\theta-2 \theta$ scan technique with scan speed $6 \mathrm{~min}^{1}$ in θ and scan width ($1.3+$ $0 \cdot 36 \tan \theta)$. Range of indices, $-18 \leq h, k \leq 18,0 \leq l$ $\leq 14(4<2 \theta \leq 60) ; 0 \leq h, k \leq 28,0 \leq l \leq 21(60<$ $2 \theta \leq 100^{\circ}$). Variation of standard reflections, 0.993 $<\left|F_{o} /\right| F_{o \text { initial }}<1 \cdot 006, \quad 12978$ reflections measured: 10943 reflections observed with $\left.F_{o}\right\rangle$ $3 \sigma\left(\mid F_{o}\right) ; 3916$ unique reflections ($R_{\text {int }}=0.016$ for 1555 reflections). Lattice constants were determined based on 252θ values $(23<2 \theta<30)$. Analytical corrections for absorption were made with $\mu r=$ 0.203 assuming a spherical crystal shape (relative transmission factors $0.74<A<0.75$).
(II): Intensity data were collected at 120 K from an as-grown crystal of approximate dimensions $0.3 \times$ $0.4 \times 0.4 \mathrm{~mm}$. Range of indices, $-18 \leq h, k \leq 18,0$ $\leq l \leq 13(4<2 \theta \leq 60) ; 0 \leq h, k \leq 21, \quad 0 \leq l \leq 15$ $(60<2 \theta \leq 70) .0 .994<F_{o}\left|/ F_{o}\right|_{\text {initial }}<1.009,9898$

Table 1. Refinement information for (A) the conventional refinement with RADIEL and (B) the multipole refinement with MOLLY

	(I) $l e l_{3}$-isomer		(II) $o b_{3}$-isomer	
	A	B	A	B
No. of reflections	3916	3916	1831	1831
No. of parameters	184	319	184	319
$R(F)$	0.043	0.038	0.041	0.033
H $R(F)$	0.036	0.027	0.037	0.026
S	1.26	0.98	1.40	1.08

reflections measured: 8297 reflections observed with $\left.F_{o}\right\rangle>3 \sigma\left(i F_{o}\right) ; 1831$ unique reflections ($R_{\mathrm{int}}=$ 0.030 for 1385 reflections) after analytical absorption corrections $(0.84<A<0.87)$ by the Gaussian numerical integration method (Busing \& Levy, 1957).

Conventional refinement

Conventional refinement was performed with the full-matrix least-squares program RADIEL (Coppens, Guru Row, Leung, Stevens, Becker \& Yang, 1979). The function $\sum w\left(F_{o}-\mid F_{c}^{\prime}\right)^{2}$ was minimized with weights $w^{-1}=\sigma^{2}\left(F_{o}\right)+$

Fig. 1. Partial projection of the crystal structures along the c axis. (a) $\Delta(\lambda \lambda \lambda)$-complex (lel 3_{3}-isomer) and (b) $\Lambda(\lambda \lambda \lambda)$-complex $\left(o h_{3^{-}}\right.$ isomer).

Table 2. Positional parameters ($\times 10^{4}$) and equivalent isotropic temperature factors (Hamilton, 1959)

	x	y	z	$B_{\mathrm{c} 4}\left(\AA^{2} \times 10\right)$
Compound (I)				
Co	3333	6667	0	6
N(1)	2212 (1)	5331 (1)	-1153(1)	9
$\mathrm{N}(2)$	3333 (1)	5439 (1)	1153 (1)	9
C(1)	2361 (1)	4297 (1)	822 (1)	10
$\mathrm{C}(2)$	2376 (1)	4254 (1)	696 (1)	10
C(3)	2523 (1)	3232 (1)	1209 (2)	17
C(4)	1553 (2)	2056 (1)	621 (2)	24
C(5)	1568 (2)	2103 (1)	919 (2)	22
C(6)	1406 (1)	3129 (1)	1411 (1)	15
N(3)	5910 (1)	5097 (1)	990 (1)	13
$\mathrm{O}(1)$	5513 (1)	5358 (1)	1986 (1)	24
$\mathrm{O}(2)$	5600 (1)	5220 (1)	-172 (1)	18
$\mathrm{O}(3)$	6588 (1)	4681 (1)	1136 (1)	18
$\mathrm{O}($ W)	7935 (1)	5053 (1)	-1323(2)	19
Compound (II)				
Co	3333	6667	0	6
$\mathrm{N}(1)$	2220 (2)	5297 (2)	1111 (2)	9
$\mathrm{N}(2)$	3510 (2)	5526 (2)	1115 (2)	9
C(1)	1904 (2)	4213 (2)	312 (3)	12
C(2)	3034 (2)	4410 (2)	352 (3)	12
C(3)	2820 (3)	3371 (3)	- 1245 (3)	17
C(4)	2254 (3)	2242 (3)	-410 (4)	22
C(5)	1126 (3)	2045 (3)	266 (4)	25
C(6)	1335 (2)	3091 (3)	1151 (3)	18
$\mathrm{N}(3)$	4849 (1)	949 (1)	--1019 (2)	15
O(1)	4733 (1)	511 (2)	162 (4)	17
O(2)	5176 (2)	2021 (4)	- 1147 (2)	22
$\mathrm{O}(3)$	4658 (2)	332 (3)	-2075 (4)	23
$O(W)$	4963 (2)	2945 (2)	1439 (5)	19

$\left(0.015 F_{o}\right)^{2}$. The initial atomic coordinates were those of Miyamae (1977). All the H atoms appeared clearly on a difference synthesis. Positional and thermal parameters of non-H atoms were refined using high-order data [(I): $\sin \theta / \lambda>0.7 \AA{ }^{1}$ (2507 reflections). (II): $\sin \theta / \lambda>0.55 \AA^{1}$ (1113 reflections)]. When an isotropic extinction parameter was introduced (Becker \& Coppens, 1974), the g value became $0.09(3) \times 10^{4}$ for the $l e l_{3}$-isomer, and gave a negative value for the $o h_{3}$-isomer. Subsequent refinements were carried out without an extinction correction. Complex neutral-atom scattering factors were taken from International Tahles for X-ray Crystallography (1974, Vol. IV). Refinement information is show'n in Table 1. Partial projections of the crystal structures are presented in Fig. 1.

Multipole expansion

Multipoles were included up to the hexadecapole level for $\mathrm{Co}, \mathrm{O}, \mathrm{N}$ and C atoms. The radial functions were $r^{n \prime} \exp (-\zeta r)$ with $n_{l}=4$ for all the l values (Co) and $n_{l}=2,2,2,3,4$ for $l=0,1,2,3,4(\mathrm{O}, \mathrm{N}$. and C). Core scattering factors were taken from International Tables for X-ray Crystallography (1974, Vol. IV). The positional, thermal, multipole and ζ (shielding) parameters were refined with the program MOLLY (Hansen \& Coppens, 1978). Initial ζ values were taken from Clementi \& Raimondi (1963). The $4 s$ and $4 p$ orbital populations for the Co atom were

Table 3. Bond lengths (\AA) and bond angles (")

	(I)	(II)
Co N(1)	1.983 (1)	1.988 (2)
$\mathrm{Co}-\mathrm{N}(2)$	1.967 (1)	1.965 (3)
$\mathrm{N}(1)-\mathrm{C}(1)$	1.488 (2)	1.495 (4)
$\mathrm{N}(2)-\mathrm{C}(2)$	1.487 (1)	1.482 (3)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.515 (1)	1.525 (4)
C(1). C(6)	1.519 (1)	1.522 (4)
C(2)-C(3)	1.522 (2)	1.528 (5)
C(3)-C(4)	1.531 (2)	1.527 (5)
C(4)-C(5)	1.537 (3)	1.527 (6)
C(5)-C(6)	1.531 (3)	1.533 (5)
$\mathrm{N}(3)-\mathrm{O}(1)$	1.242 (2)	1.267 (t)
$\mathrm{N}(3)-\mathrm{O}(2)$	1.263 (2)	1.262 (5)
$\mathrm{N}(3)-\mathrm{O}(3)$	1.252 (2)	1.261 (4)
$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(2)$	85.8(1)	85.6 (1)
$\mathrm{Co}-\mathrm{N}(1)-\mathrm{C}(1)$	107.0 (1)	1080 (2)
$\mathrm{Co}-\mathrm{N}(2)-\mathrm{C}(2)$	108.8 (1)	109.1 (2)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	105.4 (1)	$106.2(2)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	114.0 (1)	114.5 (2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	111.6 (1)	111.1 (3)
$\mathrm{N}(2)-\mathrm{C}(2) \cdots \mathrm{C}(1)$	106.7 (1)	106.1 (2)
$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	113.3 (1)	113.5 (3)
C(1) $\mathrm{C}(2)-\mathrm{C}(3)$	$112.2(1)$	111.4 (2)
C(2)-C(3)-C(4)	110.0 (1)	110.5 (3)
C(13)--C(4)-C(5)	$110 \cdot 8(1)$	110.9 (4)
C(4)- C(5)-C(6)	$110.5(2)$	111.7 (3)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	110.3 (1)	110.5 (3)
$\mathrm{O}(1)-\mathrm{N}(3)-\mathrm{O}(2)$	119.8 (1)	119.8 (3)
$\mathrm{O}(1)-\mathrm{N}(3)-\mathrm{O}(3)$	$120.2(1)$	120.9 (3)
$\mathrm{O}(2)-\mathrm{N}(3)-\mathrm{O}(3)$	120.0 (1)	119.2 (3)

not taken into account. Chemical symmetry $32\left(D_{3}\right)$ was assumed for the complex cation since no apparent chirality was observed in the electron distribution around Co. Symmetry constraints in the multipole parameters were imposed upon $\mathrm{NO}_{3}\left(D_{3 h}\right)$ and $\mathrm{H}_{2} \mathrm{O}$ $\left(C_{2 .}\right)$. The total charge of the unit cell was constrained to be neutral. For H atoms, no multipoles were introduced. The valence-electron populations of the H atoms were fixed at 1.0 in order to avoid unrealistic results. Atomic coordinates are listed in Table 2, bond lengths and angles in Table 3.*

Electron populations of the cobalt $3 d$ orbitals are listed in Table 4. They were derived from the multipole coefficients based on the following equations (Holladay, Leung \& Coppens, 1983):

$$
\begin{align*}
P\left(a_{1}\right)= & 0.2 P_{00}+1.0392 P_{20}+1.3957 P_{40} \\
P(e)= & 0.4 P_{00}-1.0392 P_{20}-0.3102 P_{40} \\
& \pm 1.9746 P_{43} \\
P\left(e^{\prime}\right)= & 0.4 P_{00}-1.0856 P_{40} \mp 1.9746 P_{43-} \\
P\left(e_{+} e_{-}^{\prime}+e e_{-}^{\prime}\right)= & -2.9394 P_{20}+2.1932 P_{40} \\
& \mp 1.3963 P_{43} . \tag{1}
\end{align*}
$$

[^2]Table 4. Electron populations for the cobalt d orbitals

	(1) lel l_{3}-isomer	(11) ob ${ }_{3}$-isome
Total	5.98 (8)	6.7 (1)
a_{1}	1.71 (6)	1.8 (1)
${ }^{\prime}$	${ }_{\text {3 }}^{3.12(12)}$	$3.2(2)$ 1.7
e.e.e	0.23 (14)	0.5 (3)

where the P 's with parentheses indicate orbital populations and the $P_{l m}$'s the multipole parameters. Upper and lower signs correspond to (I) and (II), respectively. Here, the threefold axis is taken as the z axis and the chemical twofold axis, passing through Co and the midpoint between the $\mathrm{N}(1)$ and $\mathrm{N}(2)$ atoms, is chosen as the x axis in order to constrain the Co multipole densities to D_{3} symmetry. Since the

Fig. 2. Observed deformation density after the phase improvement. This is a section through a $\mathrm{Co}-\mathrm{N}$ bond and the threefold axis. Contour intervals at $0.2 \mathrm{e} \AA^{-3}$. (a) $l e l_{3}$ - and (b) ob b_{3}-isomer.
local axes were rotated along z by 30° (I) clockwise or (II) counterclockwise from those of Holladay, Leung \& Coppens (1983), $P_{43}+$ in their Table $4(b)$ was replaced by (I) $-P_{43-}$ or (II) $+P_{4,3-}$.

Discussion

Phase improvement

Deformation maps around the Co atom after multipole refinement are shown in Fig. 2. The difference densities after conventional refinement based on the independent atom model (IAM), $\Delta \rho^{\prime}(\mathbf{r})$, are also presented in Fig. 3. The negative density on the $\mathrm{Co}-\mathrm{N}$ bond axis became clear after the phase improvement. The charge asphericity around the Co

Fig. 3. Difference Fourier synthesis after conventional refinement (without the phase improvement). Contour intervals at $0.2 \mathrm{e} \AA{ }^{3}$. (a) $l e l_{3}$ - and (b) $o b_{3}$-isomer.
atom is represented mainly with two hexadecapoles, y_{40} and y_{43} (see Figs. $6 a$ and $6 b$). The difference density before the phase improvement, $\Delta \rho^{\prime}(\mathbf{r})$, can be separated approximately into each component of the multipole densities.

$$
\begin{align*}
\Delta \rho^{\prime}(\mathbf{r})= & \int\left[F_{\mathrm{IAM}}(\mathbf{k})+\sum_{l m} F_{l m}(\mathbf{k})-F_{\mathrm{IAM}}(\mathbf{k})\right] \\
& \times \exp \left[i \varphi_{\mathrm{IAM}}(\mathbf{k})\right] \exp (-2 \pi i \mathbf{k} \cdot \mathbf{r}) \mathrm{d} \mathbf{k} \\
\approx & \left.\sum_{l m} \int\left[F_{\mathrm{IAM}}(\mathbf{k})+F_{l m}(\mathbf{k})-F_{\mathrm{IAM}}(\mathbf{k})\right]\right] \\
& \times \exp \left[i \varphi_{\mathrm{IAM}}(\mathbf{k})\right] \exp (-2 \pi i \mathbf{k} . \mathbf{r}) \mathrm{d} \mathbf{k} \\
= & \sum_{l m} \rho_{l m}^{\prime}(\mathbf{r}) \tag{2}
\end{align*}
$$

(b)

Fig. 4. Model deformation density based on only the observed reflections. (a) lel l_{3}-isomer, 3916 reflections, $\sin \theta / \lambda \leq 1.08 \AA$ ', (b) $o h_{3}$-isomer, 1831 reflections, $\sin \theta / \lambda \leq 0.78 \AA$ '. Contour intervals at $0.2 \mathrm{e}^{\AA}{ }^{3}$.
where $F_{\text {IAM }}(\mathbf{k})$ is the structure factor for the scattering vector \mathbf{k} based on the IAM, $F_{l m}(\mathbf{k})$ the contribution of the multipole density $\rho_{l m}$ in the structure factor. A diagram in Fig. 10 explains the approximation involved in equation (2). The artificial structure factors, $F_{\text {IAM }}(\mathbf{k})+F_{l m}(\mathbf{k})$, were calculated with the refined multipole parameters, P_{40} or P_{43-}, and the independent atom model $\left[P_{40}=0.13\right.$ (1) and P_{43-} $=0 \cdot 15(2)]$. Phase-error free multipole densities $\rho_{40}(\mathbf{r})$ and $\rho_{43}(\mathbf{r})$, and the biased densities $\rho_{40}^{\prime}(\mathbf{r})$ and ρ_{43}^{\prime} (r) are compared in Fig. 6 for the lel $_{3}$ conformer. The damping factor $c_{l m}$ can be defined as

$$
\begin{equation*}
\rho_{l m}^{\prime}(\mathbf{r}) \simeq c_{l m} \rho_{l m}(\mathbf{r}) \tag{3}
\end{equation*}
$$

Fig. 5. Model deformation density based on all the reflections within the range of $\sin \theta / \lambda \leq 1.08 \AA$ '. (a) lel $_{3}$-isomer, 5285 reflections. (b) $o b_{3}$-isomer, 5350 reflections. Contour intervals at $0.2 \mathrm{e} \AA{ }^{3}$.
in order to express the bias due to the incorrect phase angles. The c_{40} and c_{43} - values of the lel_{3}-Co complex are 0.83 and 0.29 , respectively. The deformation density ρ_{43}. is much smoothed out. This is the reason why the negative trough on the $\mathrm{Co}-\mathrm{N}$ bond axis is weakened before the phase improvement. Further considerations were continued to understand this peculiarity.

Multipole densities are symmetric or antisymmetric with respect to the atom center. Therefore, the Fourier transform is expressed as
$f_{l m}(\mathbf{k})=\frac{1}{2} \int \rho_{l m}(r)\left[\exp (2 \pi i \mathbf{k} \cdot \mathbf{r})+s_{l m} \exp (-2 \pi i \mathbf{k} . \mathbf{r})\right] \mathrm{dr}(4)$
where $\rho_{l m}(-\mathbf{r})=s_{l m} \rho_{l m}(\mathbf{r}), s_{l m}=-1$ or 1 . Since two Co atoms exist in a unit cell at $\left(\frac{1}{3}, \frac{2}{3}, 0\right)$ and $\left(\frac{2}{3}, \frac{1}{3}, 2\right)$
related by a 2_{1} screw axis along z, the structure factor for the multipole density is written as

$$
\begin{align*}
F_{l m}(\mathbf{k})= & \sum_{l m} f_{l m}(\mathbf{k})\left\{\exp \left[-2 \pi i\left(\frac{2 h}{3}+\frac{k}{3}\right)\right]\right. \\
& \left.+k_{l m} \exp \left[2 \pi i\left(\frac{2 h}{3}+\frac{k}{3}\right)\right] \exp (l \pi i)\right\} \tag{5}
\end{align*}
$$

where $k_{l m}= \pm 1$, which indicates the parity of the multipole density to a rotation around z by 180 . The $F_{l m}(\mathbf{k})$ is a real or pure imaginary number depending on the parities, $s_{l m}$ and $k_{l m}$, and the index l as summarized in Table 5. The contribution of Co to the structure factor in the IAM, $F_{\text {IAM. } \mathrm{Co}_{0} \text {, }}$, has the identical phase to that of the monopole. The character of the $F_{40}(\mathbf{k})$ is of the same type as $F_{00}(\mathbf{k})$, because $k_{40}=s_{40}=1$. On the other hand, the phase angle of

Fig. 6. Separation of the multipole densities assuming equation (2). Contour intervals at $0.2 \mathrm{e} \AA{ }^{3}$. Phase-error free multipole densities (a) ρ_{40} and (b) ρ_{43}, and the biased densities (c) ρ_{40}^{\prime} and (d) ρ_{43}^{\prime}

Table 5. Character of the $F_{l m}(h k l)$ for the Co atoms in the title crystals
(i) When $k_{l m}=1$

$F_{43-}(\mathbf{k})$ differs from that of $F_{00}(\mathbf{k})$ by $\pi / 2$ since k_{43} $=-1, s_{43-}=1$. For reflections to which the contribution of the Co atom is large, the phase of $F_{\text {IAM }}$ is a good approximation for F_{40}, but not for F_{43}. An additional artificial calculation was made for the $\left.l e\right|_{3}$-conformer by replacing the atom scattering factors of Co with those of Rh. The damping factors of c_{40} and c_{43} in equation (3) became $0.83 \rightarrow 1.03$ and $0.29 \rightarrow 0.21$, respectively. Therefore, the bias due to the phase error can be decreased by introducing a heavier atom center, but information on certain types of multipole densities will be still missing.

Charge asphericity

Model deformation density maps based on the observed reflection indices [(I) 3916 reflections, $\sin \theta / \lambda \leq 1.08 \AA{ }^{\prime}$; (II) 1831 reflections, $\sin \theta / \lambda \leq$ $0.78 \AA{ }^{\prime}$ '] are shown in Fig. 4. There arc four positive peaks around the Co atom corresponding to the a_{1} and e orbitals, which are of $t_{2 g}$ parentage in the O_{h} field. It is mysterious that the positive deformation density on the threefold axis is much higher than the other maxima although the electron population of

Fig. 7. Model deformation density on the NO_{3} plane of the ${ }^{(c} l_{3}$-isomer, $\left(\sin \theta_{i} \lambda\right)_{\text {maxi }}=1.08 \AA^{\prime}$ (5285 reflections). Contour intervals at 0.05 e $\AA{ }^{3}$
the e orbitals, $78(3)-80(5) \%$ is comparable with that of the a_{1} orbital ($d_{z^{2}}$), $86(3)-90(5) \%$ (see Table 4). Fig. 5 was calculated from all reflections within the range $\sin \theta / \lambda \leq 1.08 \AA^{-1}$ [(I) 5285, (II) 5350 reflections]. Improvement from Fig. 4(a) to Fig. 5(a) indicates that the contribution of the weak reflections [$F_{o} \mid<3 \sigma\left(\mid F_{o}\right)$] removed the imbalance of the positive peak heights. In addition, the features of the $o b_{3}$-isomer became clearer because of the higher resolution, $(\sin \theta / \lambda)_{\text {max }}=1.08$ from $0.78 \AA^{-1}$ (Fig. $4 b$ to Fig. $5 b$). Finally, typical d-electron distributions in the octahedral ligand field were obtained. The negative trough on the $\mathrm{Co}-\mathrm{N}$ bond axis indicates the electron deficiency in the e^{\prime} orbitals. The charge asphericities in the $l e l_{3}$ - and $o b_{3}$-conformers are similar and significant chirality was not observed, suggesting that the effect of electrostatic potential due to the $\mathrm{C}-\mathrm{C}$ bond in the chelate rings is negligible for the d electrons to a first approximation. The nitrogen lone-pair orbital is directed along the $\mathrm{Co}-\mathrm{N}$ bond axis and any offset was not detected. The $\mathrm{Co}-\mathrm{N}(1)$ and $\mathrm{Co}-\mathrm{N}(2)$ bond axes are inclined with respect to the threefold axis by (I) $54 \cdot 55$ (3) and $54 \cdot 23$ (4), and (II) 56.84 (6) and 56.27 (8), respectively (that for the regular octahedron is 54.74°). The small deformations of the CoN_{6} chromophore from O_{h} symmetry, compression or elongation along the threefold axis, do not seem to be reflected in the d-orbital populations (see Table 4).
The model deformation density map of NO_{3}^{-}in (I) with $\sin \theta / \lambda \leq 1.08 \AA{ }^{\prime}$ is presented in Fig. 7. The $\mathrm{N}-\mathrm{O}$ bonding and oxygen lone-pair electrons were clearly detected. Lone-pair electrons of the water oxygen atom were observed as an elongated peak on the plane bisecting the $\mathrm{H}-\mathrm{O}-\mathrm{H}$ angle. The $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bonding electrons in the chxn ligand are also well reproduced by the multipole functions as seen from Fig. 8. Figs. $9(a)$ and $9(b)$ are the model deformation density maps on the $\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(2)$ plane of (I) calculated with the limits of $(\sin \theta / \lambda)_{\text {max }}$ $=1.08$ and $1.80 \AA^{-1}$, respectively. The peak shape of the nitrogen lone pair is disturbed by the ripple around the Co atom, owing to a series-termination effect. Therefore, the interpretation of the small difference density in the vicinity of a high positive peak or negative trough will be meaningless. When the Co multipoles were omitted from the model deformation density, a single peak in the nitrogen

Fig. 8. Model deformation density on the plane containing the $\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(3)$ bond axes of the lel ${ }_{3}$-isomer, $(\sin \theta / \lambda)_{\text {max }}=$ $1.08 \AA{ }^{1}$ (5285 reflections). Contour intervals at $0.05 \mathrm{e} \AA \AA^{\text {max }}$.
lone pair appeared even with $(\sin \theta / \lambda)_{\max }=$ $1.08 \AA^{-1}$.

Molecular structure

The two independent $\mathrm{Co}-\mathrm{N}$ bond lengths show a slight imbalance of 0.016 (1) and 0.023 (3) \AA in the $l e l_{3}$ - and $o b_{3}$-conformers. However, there is no important difference in hydrogen bonds involving the ligating N atoms (see Table 6). The imbalance did not disappear even if the atomic coordinates were refined based on high-order reflections.

Crystals of $\left[M(\mathrm{chxn})_{3}\right]\left(\mathrm{NO}_{3}\right)_{3} .3 \mathrm{H}_{2} \mathrm{O}, \quad M=\mathrm{Cr}^{\text {III }}$, $\mathrm{Co}^{\text {III }}, \mathrm{Rh}^{\text {III }}$ and $\mathrm{Ir}^{\text {III }}$ are isotypes, and the $M-\mathrm{N}$ imbalance has been observed systematically. There-

Fig. 9. Model deformation density on the $\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(2)$ plane of the $l e l_{3}$-isomer. Contour intervals at $0.05 \mathrm{e} \AA{ }^{3}$. (a) $(\sin \theta / \lambda)_{\max }=1.08 \AA^{-1}\left(5285\right.$ reflections), (b) $(\sin \theta / \lambda)_{\max }=$ $1.80 \AA^{1}$ (24255 reflections).

Table 6. Hydrogen-bond distances (\AA) involving the ligating N atoms

(I) lel l_{3}-isomer		(II) ob $_{3}$-isomer	
$\mathrm{N}(1) \cdots \mathrm{O}\left(2^{\prime}\right)$	$3 \cdot 114(2)$	$\mathrm{N}(1) \cdots \mathrm{O}\left(2^{\prime v}\right)$	$2 \cdot 991(4)$
$\mathrm{N}(1) \cdots \mathrm{O}\left(3^{\prime \prime}\right)$	$3 \cdot 125(2)$	$\mathrm{N}(2) \cdots \mathrm{O}\left(W^{v}\right)$	$2 \cdot 949(5)$
$\mathrm{N}(2) \cdots \mathrm{O}(1)$	$3 \cdot 005(2)$	$\mathrm{N}(2) \cdots \mathrm{O}\left(3^{\prime \prime}\right)$	$3 \cdot 128(6)$
$\mathrm{N}(2) \cdots \mathrm{O}\left(W^{\prime \prime \prime}\right)$	$2 \cdot 900(2)$	$\mathrm{N}(2) \cdots \mathrm{O}\left(W^{\prime \prime}\right)$	$3 \cdot 130(4)$

Symmetry code: (i) $-x+y, 1-x, z$; (ii) $1-x, 1-y, z-\frac{1}{2}$; (iii) $1-x, 1-y, z+\frac{1}{2} ;$ (iv) $x-y, x, z+\frac{1}{2} ;$ (v) $x-y, x, z-\frac{1}{2}$; (vi) $1-x+y, 1-x, z$.
fore, the imbalance seems to be the result of crystal packing forces.

We are grateful to Dr Frode Galsbøl of the H. C. Ørsted Institute, University of Copenhagen, for supplying the crystals.

Fig. 10. Diagram of the approximation in equation (2) that $\Delta F_{:}=F_{1 A M}+\left.\sum_{l m} F_{l m}\right|^{-i} F_{1 A M}=\sum_{l m}\left(F_{I A M}+F_{l m} \mid-F_{1 \Lambda M i}\right)$. The value of $\Delta F 1$ can be estimated at summation of direct cosines of $F_{l m}$'s with respect to $F_{1 \mathrm{AM}}$. The direct cosine of $F_{l m}$ is nearly equal to $F_{\text {IAM }}+F_{l m} \mid-F_{\text {IAM }}$, since $\mid F_{l m}$'s are usually much smaller than $\mid F_{\text {IAM }}$.

References

Becker, P. J. \& Coppens, P. (1974). Acta Cryst. A30, 129-147.
Busing, W. R. \& Levy, H. A. (1957). Acta Cryst. 10, 180-182.
Clementi, E. \& Raimondi, D. L. (1963). J. Chem. Phys. 38, 2686-2689.
Coppens, P., Guru Row, T. N., Leung, P., Stevens, E. D., Becker, P. J. \& Yang, Y. W. (1979). Acta Cryst. A35, 63-72.
Hamilton, W. C. (1959). Acta Cryst. 12, 609-610.
Hansen, N. K. \& Coppens, P. (1978). Acta Cryst. A34, 909-921.
Holladay, A., Leung, P. \& Coppens, P. (1983). Acta Cryst. A39, 377-387.
Miyamae, H. (1977). Thesis. Univ. of Tokyo, Japan.
Miyamae, H., Sato, S. \& Saito, Y. (1977). Acta Cryst. B33, 3391-3396.
Takazawa, H., Ohba, S. \& Saito, Y. (1988). Acta Cryst. B44, 580-585.

[^1]: (c) 1991 International Union of Ciystallography

[^2]: * Lists of structure factors, anisotropic thermal parameters, positional parameters of H atoms, bond lengths and bond angles involving H atoms and multipole parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54335 (58 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography. 5 Abbey Square, Chester CH1 2HU, England.

